Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Bio Med Chem Au ; 2(5): 509-520, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281299

RESUMO

Lipoic acid is an eight-carbon sulfur-containing biomolecule that functions primarily as a cofactor in several multienzyme complexes. It is biosynthesized as an attachment to a specific lysyl residue on one of the subunits of these multienzyme complexes. In Escherichia coli and many other organisms, this biosynthetic pathway involves two dedicated proteins: octanoyltransferase (LipB) and lipoyl synthase (LipA). LipB transfers an n-octanoyl chain from the octanoyl-acyl carrier protein to the target lysyl residue, and then, LipA attaches two sulfur atoms (one at C6 and one at C8) to give the final lipoyl cofactor. All classical lipoyl synthases (LSs) are radical S-adenosylmethionine (SAM) enzymes, which use an [Fe4S4] cluster to reductively cleave SAM to generate a 5'-deoxyadenosyl 5'-radical. Classical LSs also contain a second [Fe4S4] cluster that serves as the source of both appended sulfur atoms. Recently, a novel pathway for generating the lipoyl cofactor was reported. This pathway replaces the canonical LS with two proteins, LipS1 and LipS2, which act together to catalyze formation of the lipoyl cofactor. In this work, we further characterize LipS1 and LipS2 biochemically and spectroscopically. Although LipS1 and LipS2 were previously annotated as biotin synthases, we show that both proteins, unlike E. coli biotin synthase, contain two [Fe4S4] clusters. We identify the cluster ligands to both iron-sulfur clusters in both proteins and show that LipS2 acts only on an octanoyl-containing substrate, while LipS1 acts only on an 8-mercaptooctanoyl-containing substrate. Therefore, similarly to E. coli biotin synthase and in contrast to E. coli LipA, sulfur attachment takes place initially at the terminal carbon (C8) and then at the C6 methylene carbon.

2.
ACS Bio Med Chem Au ; 2(5): 456-468, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36281303

RESUMO

Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an n-octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment. All radical SAM enzymes have at least one [4Fe-4S] cluster that is used in the reductive cleavage of SAM to generate the 5'-dA·; however, LSs contain an additional auxiliary [4Fe-4S] cluster from which sulfur atoms are extracted during turnover, leading to degradation of the cluster. Therefore, these enzymes catalyze only 1 turnover in the absence of a system that restores the auxiliary cluster. In Escherichia coli, the auxiliary cluster of LS can be regenerated by the iron-sulfur (Fe-S) cluster carrier protein NfuA as fast as catalysis takes place, and less efficiently by IscU. NFU1 is the human ortholog of E. coli NfuA and has been shown to interact directly with human LS (i.e., LIAS) in yeast two-hybrid analyses. Herein, we show that NFU1 and LIAS form a tight complex in vitro and that NFU1 can efficiently restore the auxiliary cluster of LIAS during turnover. We also show that BOLA3, previously identified as being critical in the biosynthesis of the lipoyl cofactor in humans and Saccharomyces cerevisiae, has no direct effect on Fe-S cluster transfer from NFU1 or GLRX5 to LIAS. Further, we show that ISCA1 and ISCA2 can enhance LIAS turnover, but only slightly.

3.
Nature ; 597(7877): 566-570, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526715

RESUMO

Numerous post-transcriptional modifications of transfer RNAs have vital roles in translation. The 2-methylthio-N6-isopentenyladenosine (ms2i6A) modification occurs at position 37 (A37) in transfer RNAs that contain adenine in position 36 of the anticodon, and serves to promote efficient A:U codon-anticodon base-pairing and to prevent unintended base pairing by near cognates, thus enhancing translational fidelity1-4. The ms2i6A modification is installed onto isopentenyladenosine (i6A) by MiaB, a radical S-adenosylmethionine (SAM) methylthiotransferase. As a radical SAM protein, MiaB contains one [Fe4S4]RS cluster used in the reductive cleavage of SAM to form a 5'-deoxyadenosyl 5'-radical, which is responsible for removing the C2 hydrogen of the substrate5. MiaB also contains an auxiliary [Fe4S4]aux cluster, which has been implicated6-9 in sulfur transfer to C2 of i6A37. How this transfer takes place is largely unknown. Here we present several structures of MiaB from Bacteroides uniformis. These structures are consistent with a two-step mechanism, in which one molecule of SAM is first used to methylate a bridging µ-sulfido ion of the auxiliary cluster. In the second step, a second SAM molecule is cleaved to a 5'-deoxyadenosyl 5'-radical, which abstracts the C2 hydrogen of the substrate but only after C2 has undergone rehybridization from sp2 to sp3. This work advances our understanding of how enzymes functionalize inert C-H bonds with sulfur.


Assuntos
Bacteroides/enzimologia , Metiltransferases/química , RNA de Transferência/química , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfurtransferases/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Biocatálise , Isopenteniladenosina/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Domínios Proteicos , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Sulfurtransferases/metabolismo
4.
J Am Chem Soc ; 141(36): 14142-14151, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390192

RESUMO

Quinolinic acid is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and iminoaspartate (IA) by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique noncysteinyl-ligated iron ion (Fea), which is proposed to bind the hydroxyl group of an intermediate in its reaction to facilitate a dehydration step. However, direct evidence for this role in catalysis has yet to be provided, and the exact chemical mechanism that underlies this transformation remains elusive. Herein, we present a structure of NadA from Pyrococcus horikoshii (PhNadA) in complex with IA and show that a carboxylate group of the molecule is ligated to Fea of the iron-sulfur cluster, occupying the site to which DHAP has been proposed to bind during catalysis. When crystals of PhNadA in complex with IA are soaked briefly in DHAP before freezing, electron density for a new molecule is observed, which we suggest is related to an intermediate in the reaction. Similar, but slightly different, "intermediates" are observed when crystals of a PhNadA Glu198Gln variant are incubated with DHAP, oxaloacetate, and ammonium chloride, conditions under which IA is formed chemically. Continuous-wave and pulse electron paramagnetic resonance techniques are used to verify the binding mode of substrates and proposed intermediates in frozen solution.


Assuntos
Ácido Aspártico/análogos & derivados , Fosfato de Di-Hidroxiacetona/metabolismo , Complexos Multienzimáticos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biocatálise , Cristalografia por Raios X , Fosfato de Di-Hidroxiacetona/química , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/química , Pyrococcus horikoshii/enzimologia
5.
J Am Chem Soc ; 138(23): 7224-7, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27224840

RESUMO

Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity.


Assuntos
Complexos Multienzimáticos/química , Pyrococcus horikoshii/enzimologia , Ácido Quinolínico/química , Ácido Aspártico/química , Sítios de Ligação , Catálise , Fosfato de Di-Hidroxiacetona/química , Modelos Moleculares , Conformação Proteica
6.
Life Sci ; 78(1): 8-13, 2005 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-16125202

RESUMO

In studying transketolase (TK) from Saccharomyces cerevisiae, the majority of researchers use as cofactors Mg(2+) and thiamine diphosphate (ThDP) (by analogy with other ThDP-dependent enzymes), whereas the active site of native holoTK is known to contain only Ca(2+). Experiments in which Mg(2+) was substituted for Ca(2+) demonstrated that the kinetic properties of TK varied with the bivalent cation cofactor. This led to the assumption that TK species obtained by reconstitution from apoTK and ThDP in the presence of Ca(2+) or Mg(2+), respectively, adopt different conformations. Kinetic study of the H103A mutant yeast transketolase. FEBS Letters 567, 270-274]. Analysis of far-UV circular dichroism (CD) spectra and of data, obtained using methods of thermal denaturing, differential scanning calorimetry (DSC) and tryptophan fluorescence spectroscopy, corroborated this assumption. Indeed, the ratios of secondary structure elements in the molecule of apoTK, recorded in the presence of Ca(2+) or Mg(2+), respectively, turned out to be different. The two forms of the holoenzyme, obtained by reconstitution from apoTK and ThDP in the presence of Ca(2+) or Mg(2+), respectively, also differed in stability: the holoenzyme was more stable in the presence of Ca(2+) than Mg(2+).


Assuntos
Coenzimas/química , Transcetolase/química , Varredura Diferencial de Calorimetria , Cátions/química , Dicroísmo Circular , Cinética , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Saccharomyces cerevisiae/enzimologia , Espectrometria de Fluorescência , Temperatura , Triptofano/química
7.
Eur J Biochem ; 271(21): 4189-94, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15511224

RESUMO

The influence of substrates on the interaction of apotransketolase with thiamin diphosphate was investigated in the presence of magnesium ions. It was shown that the donor substrates, but not the acceptor substrates, enhance the affinity of the coenzyme either to only one active center of transketolase or to both active centers, but to different degrees in each, resulting in a negative cooperativity for coenzyme binding. In the absence of donor substrate, negative cooperativity is not observed. The donor substrate did not affect the interaction of the apoenzyme with the inactive coenzyme analogue, N3'-pyridyl-thiamin diphosphate. The influence of the donor substrate on the coenzyme-apotransketolase interaction was predicted as a result of formation of the transketolase reaction intermediate 2-(alpha,beta-dihydroxyethyl)-thiamin diphosphate, which exhibited a higher affinity to the enzyme than thiamin diphosphate. The enhancement of thiamin diphosphate's affinity to apotransketolase in the presence of donor substrate is probably one of the mechanisms underlying the substrate-affected transketolase regulation at low coenzyme concentrations.


Assuntos
Regulação Enzimológica da Expressão Gênica , Transcetolase/química , Transcetolase/metabolismo , Sítios de Ligação , Soluções Tampão , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Íons , Cinética , Magnésio/química , Cloreto de Magnésio/química , Modelos Químicos , Ligação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrofotometria , Temperatura , Tiamina Pirofosfato/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...